SNARE Complex Formation Is Triggered by Ca2+ and Drives Membrane Fusion

نویسندگان

  • Yu A Chen
  • Suzie J Scales
  • Sejal M Patel
  • Yee-Cheen Doung
  • Richard H Scheller
چکیده

Neurotransmitter exocytosis, a process mediated by a core complex of syntaxin, SNAP-25, and VAMP (SNAREs), is inhibited by SNARE-cleaving neurotoxins. Botulinum neurotoxin E inhibition of norepinephrine release in permeabilized PC12 cells can be rescued by adding a 65 aa C-terminal fragment of SNAP-25 (S25-C). Mutations along the hydrophobic face of the S25-C helix result in SNARE complexes with different thermostabilities, and these mutants rescue exocytosis to different extents. Rescue depends on the continued presence of both S25-C and Ca2+ and correlates with complex formation. The data suggest that Ca2+ triggers S25-C binding to a low-affinity site, initiating trans-complex formation. Pairing of SNARE proteins on apposing membranes leads to bilayer fusion and results in a high-affinity cis-SNARE complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biochemical and Functional Studies of Cortical Vesicle Fusion: The SNARE Complex and Ca2+ Sensitivity

Cortical vesicles (CV) possess components critical to the mechanism of exocytosis. The homotypic fusion of CV centrifuged or settled into contact has a sigmoidal Ca2+ activity curve comparable to exocytosis (CV-PM fusion). Here we show that Sr2+ and Ba2+ also trigger CV-CV fusion, and agents affecting different steps of exocytotic fusion block Ca2+, Sr2+, and Ba2+-triggered CV-CV fusion. The ma...

متن کامل

Structural transitions in the synaptic SNARE complex during Ca2+-triggered exocytosis

The synaptic SNARE complex is a highly stable four-helix bundle that links the vesicle and plasma membranes and plays an essential role in the Ca(2+)-triggered release of neurotransmitters and hormones. An understanding has yet to be achieved of how this complex assembles and undergoes structural transitions during exocytosis. To investigate this question, we have mutated residues within the hy...

متن کامل

A Stimulation Function of Synaptotagmin-1 in Ternary SNARE Complex Formation Dependent on Munc18 and Munc13

The Ca2+ sensor synaptotagmin-1 (Syt1) plays an essential function in synaptic exocytosis. Recently, Syt1 has been implicated in synaptic vesicle priming, a maturation step prior to Ca2+-triggered membrane fusion that is believed to involve formation of the ternary SNARE complex and require priming proteins Munc18-1 and Munc13-1. However, the mechanisms of Syt1 in synaptic vesicle priming are s...

متن کامل

Calcium-dependent dissociation of synaptotagmin from synaptic SNARE complexes.

The formation of the synaptic core (SNARE) complex constitutes a crucial step in synaptic vesicle fusion at the nerve terminal. The interaction of synaptotagmin I with this complex potentially provides a means of conferring Ca2+-dependent regulation of exocytosis. However, the subcellular compartments in which interactions occur and their modulation by Ca2+ influx remain obscure. Sodium dodecyl...

متن کامل

Determinants of Synaptobrevin Regulation in Membranes□D

Neuronal exocytosis is driven by the formation of SNARE complexes between synaptobrevin 2 on synaptic vesicles and SNAP-25/syntaxin 1 on the plasma membrane. It has remained controversial, however, whether SNAREs are constitutively active or whether they are down-regulated until fusion is triggered. We now show that synaptobrevin in proteoliposomes as well as in purified synaptic vesicles is co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 97  شماره 

صفحات  -

تاریخ انتشار 1999